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Abstract

In this paper, we obtain some sufficient conditions for the
oscillations of all solutions of impulsive partial differential
equations. The results gained here are based on the
improvement impulses, delay and forcing term in the
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1. Introduction

In recent years the theory of impulsive differential equations emerge as an important
area of research, since such equations have applications in the control theory, physics, biology,
population dynamics, economics, etc.

In [4], the problem of oscillation and non-oscillation of impulsive delay equation of the
form
x'() +p®)x(t—p) =e(t), t#t,

x(t) = apx(ty), x'(t) = Bex'(te), k=12,
was studied by Huang using Kartsatos technique in the year 2006. Using the same approach in
[20], Zhang et.al., considered the oscillation of second order forced FDE with impulses
') +pOf (x(t —p)) = e(t), t*ty,
x(t) = apx(ty), x'(t) = Pux'(te), k=12,

and established some interval oscillation criteria which developed some known results for the
equations without delay or impulses [2, 9].

In the last decades, interval oscillation of impulsive differential equations was arousing
the interest of many researchers, see [3, 8, 10-12, 14, 17, 18] and the references cited therein. For
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further details applications, one can refer the monographs [1, 7, 16, 19] and reference cited
therein. Most of the existing literature concentrated on interval oscillation criteria for case of
without delay and only very few papers appeared for case of with delay.

As far as author knowledge, it seems that there has been no paper dealing with interval
oscillation criteria for impulsive partial differential equations. Motivated by this gap, we consider
the following impulsive partial differential equations of the form

9 9 N )
—|r® (540 0) |+ at o @t =) + ) 40008 et —p)
j=1

l

= a(t)du(x,t) + Z a;(D)Au(x, t —15) + F(x, t), t#ty, g (1.1)
s=1

u(x, ty) = ag (%, t, u(x, ty))

u (%, t7F) = b (x, ty, u (%, t)), k=12,-, (x,t) EAXRy =G, )

where Q is a bounded domain in RN with a piecewise smooth boundary 9Q, A is the Laplacian in
the Euclidean space RN and R, = [0, +o0).
Equation (1.1) is enhancement with one of the subsequent Dirichlet boundary condition,

u(x,t) =0, (x,t) € 02 X R,. (1.2)
In the sequel, we assume that the following hypotheses (H) hold:
(Hl) T(t) € Cl(]R+J (0, +OO)), CI(X' t)! CI] (x' t) € C(Gr R+), CI(t) = Ccne%l CI(x: t)r q] (t) =

mi!_rzij (x,t),j =1,2,--,m, f 1 € C(R,R) are convex in R, with uf(u) > 0,
XE€

u]j-(u)>03nd$2$>0, fjiu)zsj >0foru#0,j=12,--mt—p<t,

t—1,<t limt—p= limt—1,=+00,s=1,2,--,land F € C(G,R).

t—-+oo t—+00

(H;) g € C(R,R) are convex in R, with ug(u) > 0, g(u) <nu foru # 0, g~! € C(R,R) are
continuous functions with ug=!(u) > 0 for u # 0 and there exist positive constant { such

-1 -1 -1 too 1 1 _
that g~ (uv) < g7 (uw)g~!(v) foruv # 0 and fto g (r(s)) ds = +oo.

(H3) a(t), as(t) € PC(R,,R,), s=1,2,...,1, where PC represents the class of functions
which are piecewise continuous in t with discontinuities of first kind only at t = ¢,
k =1,2,---,and left continuous att = t, k =1,2,---.

(Hy) u(x,t) and its derivative u,(x,t) are piecewise continuous in t with discontinuities of
firstkind only at t =t;, k = 1,2,-++, and left continuous at t = t;, u(x,t;,) = u(x, t;),
u (6, t) = u(x, t), k=12,

(Hs) ay, b, €PC(2XR.XRR), k=1,2,--and there exist positive constants
ay, @, B, Brsuch that a < a; < By < Bifork =12,
a, (x, t,,u(x,t b, (x, t,,u(x,t
o < K (x, t, u( k))Sak, g < k(% e U (X, £ )
u(x, ty) ug (x, ty)

< By

Definition 1.1 [19]. A solution u of the problem (1.1)-(1.2) is a function u € C?(Q X
t_1,+%),R) N C(Q X t_;, +0), R) that satisfies (1.1), where

t_1:= min {O, min {%Qgt - TS}}, t_1:= min {0, %‘_>‘§t - p}.
Definition 1.2. The solution u of the problem (1.1)-(1.2) is said to be oscillatory in the domain G if
it has arbitrary large zeros. Otherwise it is non-oscillatory.

It is identified that [15] the smallest eigenvalue Ay > 0 of the eigenvalue problem
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Aw(x) + Aw(x) =0, inQ
wx) =0, onadQ,
and the consequent eigenfunction ®(x) > 0in Q.

For convenience, we introduce the following notations:

m -1
V(D) = Ko fo u(x PG)dx, Q) = eq(t) + Z £,q; ()whereK, = ( fo CD(X)dX) .
=1

This paper is organized as follows: The main results are given in Section 2. In Section 3,
one example is considered to illustrate the main result.

2. Main Result
In this section, the intervals [cq,d] and [c,d;] are considered to establish oscillation
criteria. So we also assume that
(Hg) c¢pd;e{ty}, i=12, k=12, with ¢y <dy, c;<d, and r(t) >0, q(t) =0,
q;(®)=0,j=12,-,mfort € [c; —p,di] U [c; — p,d;] and F(t) has different signs in
[c1 — p,di] and [c; — p, d;], for instance, let
F(t) <0 fort€[c; —p,di], andF(t) =0 fort € [c; —p,d;].
Denote
I(s):=max{i: ty <t; <s}, ri:=max{r(t): t€[c,d;]}, i=12
Jp(ci,d)={p € Clc,di], p) #0, p(c) =p(d;) =0, i=12}
Jo(cpd) ={G € C'[e,d;], G(£) 2 0,G(t) #0,G(c;) = G(d;) =0,

G'(t) = 29()JG(@), g) € Cle;,d;], i = 1,2},
Lemma 2.1. If the impulsive differential inequality
m

o B
[r(g ()] +eq(@v(t —p) + Z §q;(Ov(t—p) SF(t), t#t, L
=1 2.1)

. _v@d) L _ V()
e = v(ty) s Fis v'(t) <P k=12, J

has no eventually positive solution, then every solution of the boundary value problem defined by
(1.1)-(2.2) is oscillatory in G.
Proof. Suppose to the contrary that there is a non-oscillatory solution u(x,t) of the boundary
value problem (1.1) — (1.2). Without loss of generality, we may assume that u(x,t) > 0 in
Q X [tg, +o0) for some ty > 0, u(x,t —p) > 0andu(x,t —7,) >0,s =1,2,---, L.

Fort # ty,t = tg, k = 1,2,-+-, we multiplying both sides of equation (1.1) byKs ®(x) > 0
and integrating with respect to x over the domain Q, we obtain

+ K Lq(x, O)f (ulx, t — p))P(x)dx

d
r(t)g [ELu(x, t)Kp P(x)dx

dt
+K¢,f q; (x, Of; (ulx, t — p))P(x)dx = a(t)Ky f Au(x, )P (x)dx L (2.2)
o) ol

I

+Z MOLA f MuCx,t — 1) D) dx + Ko f F(x, £)®(x)dx.
s=1 Q o )
From Green’s formula and the boundary condition (1.2), we see that
Ju 0P (x)
K f Au(x, £)D(x)dx = Ko f [Cb(x)—— u ]dS + Ky f u(x, £)AD(x)dx
0 0 dy ay 0
=0—2v(t) <0, (2.3)
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and fors =1,2,---, 1, we have

d oD
Kq;LAu(x,t—Ts)dJ(x)dx - Kq,f [qp(x)% Gt — o) (X)] is
+Kop f u(x, t — t,)Ad(x)dx
=0- /10?;(1: —1,) <0, (2.4)

where dS is surface component on dQ. Furthermore applying Jensen’s inequality for convex
functions and using the assumptions on (H; ), we get that

Ko f 4o OF @(x, ¢ - p))C)dx = (Ko f fux, ¢ - p)) ) dx

> eq()v(t — p), (2.5)
andforj=12,---,m

Ko foq]- (x, 0)f; (u(x, t— p))dD(x)dx > q; (DKo L}j (u(x, t— p))tb(x)dx

2 gq;(v(t - p). (2.6)
Take

F(t) =Ky j F(x,t)®(x)dx. 2.7)
Combining (2.2)-(2.7), we get that ’
[r(Og )] +eq(Ove —p) + ) ga; (Ot~ p) < F(©).

]:
Fort =t,, k = 1,2,--, multiplying both sides of the equation (1.1) by K¢ ®(x) > 0, integrating
with respect to x over the domain Q, and from (Hs), we obtain

duxt)
E(x tk) < B* at < E
@ < u(x, ty) — o Fk= %u(x t) = Pk
at
Since v(t) = Ko fQ u(x, t)®(x)dx, we have
e VD _ v'(t)
oy B <8, fi<B K.
v(tk) v'(tk)
Therefore v(t) is an eventually positive solution of (2.1), which contradicts the hypothesis and
completes the proof. [ ]

Theorem 2.1 Assume that conditions (H;) — (Hs) hold, furthermore for any T = 0 there exist
ci, d; satisfying (Hg) withT < ¢; < dy, T < ¢; < dp and p(t) € J,(c1,dy) such that
1(d;)-1

ti(e;)+1 ) ; tie+1 5 ,
[ ewromi@d+ Y [T eor oMo
Ci k=I(c;)+1
d; ) d;
+ f QOP* ()M, (O)dt — f nr () (' ()*dt = Ap, c;, d;) (2.8)
tl(di) Ci
where A(p, ¢;,d;) = 0forI(c;) = 1(d;) and
1(d;)
Bieo+1 — Aep+1 Br — ai
N, ¢, di) = 114 * (tiep+1) = n (C)_ + z PA(t)
A iepy+1 Eiep+1 =€) k=Fe) 42 ay (ty — ty—1)
forl(c;) <I(d;),i=1,2
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E ' t € (tp, ty + p)
- ) ) P
Mi(t) = nagp + Bi(t —ty) ok
O 1 teft, +pt
n t—t, [tk +p)tkt1),

then every solution of the boundary value problem (1.1) — (1.2) is oscillatory in G.
Proof. Assume to the contrary that v(t) is a non-oscillatory solution of (2.1). Without loss of
generality we may assume that v(t) is an eventually positive solution of (2.1). Then there exists
t; = tg suchthat v(t) > 0 fort = t;. Therefore it follows from (2.1) that

m

[r(t)g(v'(t))] < F(t) —eq(t)v(t —p) — Z §q; (vt —p) <0 fort € [ty,+0). (2.9)
j=1
Thusv'(t) = 0 orv'(t) <0, t = t; for some t; > t,. We now claim that
v'(t) >0 fort>t,. (2.10)
Suppose not, then v'(t) <0 and there exists t, € [t;,+%) such that v'(t;) <0. Since
r(t)g(v'(t)) is strictly decreasing on [t1, +00). It is clear that
r®g (1) <r(t)gW (t2)):= —u
where u > 0 is a constant for t € [t;, +0), we have
T(t)g(v ) <-u

5
V() < ~Gig ((t)) whereg; = ¢g™1(u) fort € [ty, +0o),

Integrating the above inequality from t, to t, we have

v(t) < v(ty) — G4 f g (%) ds

v'(t) <g?

Letting t — +o0, we get

thELn v(t) = —
which contradiction proves that (2.10) holds. Define the Riccati Transformation
r(t)g (v'(®))
w(t):=——=. (2.11)
v(t)

It follows from (2.1) that w(t) satisfies

F() (t—p)+W2(t)
( ) v(t) nr(t)
By the assumption, we can choose ¢q,d; = to such that r(t) = 0, q(t) = 0 and g;(t) = 0 for

t€lcg—pdi],j=12,--,mand F(t) <0 for t € [c; — p,dy] from (2.1) we can easily to see
that

wi(t)=—

+[ea(® +Z £ (0)

w?(t) v(t —p)
w(t) = - +Q) ——— R (2.12)
Fort = tk, k =1,2,-, 0one has
+ gors
wiity = "D g (2.13)

v(t;h) aj
At first, we consider the case in which I(c;) < I(dy). In this case, all the impulsive moments in
[c1,d1] are tie,y+15 tigep)+2, 5 tiay)- Choose an p(t) € J,(¢q,dq) and multiplying by p?(t) on
both sides on (2.12), integrating it from c; to d, we obtain

dq

ftl(cl)+1 pz (t)W'(t)dt N J-tl(cl)+2 pZ(t)w'(t)dt T f pz (t)wl(t)dt

C1 tr(c)+1 tidq)
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ti(c1)+1 2 ticq)+2 w2 dy w2
2] pz(t)‘:;r—@dt+j 220 gr 4 . +f 028 gt

‘ @ e T OO Ao
v :I(C”Hp mem e [ (())+pp ©e® P
v (())pp ©e®
+...+ft::)1_)1+pp o & ()p) dt+£:l)p2(t)Q(t)%dt

Using the integration by parts on the left-hand side, and noting that the conditionp(c;) =
p(dy) =0, we get

I(dy1) t 2
I(cp)+1 ,
p*(t)w(t) —wEh] = f r?_t) [r(t)p () + W] dt
k=I(c1)+1 €1
1(d1)-1 2
th+1 77 p() (t) , p(t)w(t)
+ Z jt (t) r(p'(t) + ] dt +ft r(t) [r(t)p (t)+T] dt
k=I(c1)+1 "k 1
trc)+1 ( _p)
[ e TG
N Here ( - p) te+1 ( _ p)
+k_1(zc:)+1 Ut P*()Q(t) ——=— o) dt + ftk+p p2(6)Q(t) —— >
i ) )
+J;1(d1)p e G- J, movora 214)
There are several cases to consider to estimate 222,

v(t)
Case 1: For t € (ty,tr41] € [c1, d1]. f t € (E, trs1] € [c1,d4], since ty 4 — t, > p, we consider
two sub cases:

Case 1.1: If t € [t + p,tr41], thent — p € [ty, tx+1 — p] and there are no impulsive moments in
(t —p,t), thenforanyt € [t; + p,tr+1] one has

v() —v(t) = v (ED(E—t), & € (g, 1)

Since (t)g (v'(t)) is non-increasing

v 2V EDNE—t) > 2;3 § -t
From the fact that r(t) is nondecreasing, we get

rO9w'®) _ @) _ r®

v(t) t—t, t—ty

We obtain
v (t) 1 1
v(t) nt—t,

Integrating it from t — p to t, we have
v(t—p) 1lt—p—t
v(t) not—te

Case 1.2: If t € (t;,t;, + p) then t —p € (t;, — p, t;) and there is an impulsive moment t; in
(t — p, t). Similar to Case 1.1, we obtain

v(t) —v(ty = p) =V ()t — t +p), &2 € (b — Pyt

or
v (t) 1
v(t) nt—tk +p
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Integrating it fromt — p to t, we get
v(t —p) S 1t—t,

v(ty) n
Foranyt € (ti,t; + p), we have

v(t) = v(t) < V') - t).
Using the impulsive conditions in equation (2.1), we get

v(t) — apv(ty) < Brv () (E — ty)

MOIPRACY Bi(t — ti) + .

>0, teE (ty, tx +p)(2.15)

()~ vt

UsingM < l, we obtain
v(tg) P
v <a+ lﬁ t—t
That is,
v(t
() P (2.16)

v(t) ~ agpt Bt —t)
From (2.15) and (2.16), we get

v(t — 1 t—t
(t—p) > = k > 0.
v(t)  nagp+ Bt —ty)
Case 2: If t € [cy, ty(c,)+1], we consider three sub cases:
Case 2.1: If t;y>c1—p and t € [ty + P, tiey+1] then t—p € [ty tiepy+1 — L] and
there are no impulsive moments in (t — p, t). Making a similar analysis of the Case 1.1 and using
Mean-value Theorem on (¢;(c,), ticc,)+1], we get
vit—p) 1t=p =ty
v(t) N t—tie)
Case 2.2: If t;,,y > ¢ —p and t € [cq, by, + p), then t —p € [¢; — p, ty(c,)) and there is an
impulsive moments t;(,y in (t — p, t). Making a similar analysis of the Case 1.2, we have
U(t — p) 1 t — tl(cl)
- = 0.
v(t) NP + Breey) (= tigey))
Case 2.3: If t;.,y < ¢; — p, then forany t € [c1, )41l € — p € [€1 — P, ty(e)+1 — P] and there
are no impulsive moments in (t — p, t). Making a similar analysis of the Case 1.1, we obtain
vit—p) 1t=p—tly)
v(t) N t—tie)
Case 3: For t € (t;(q,), d1], there are three sub cases:
Case 3.1: If t;4,) + p < dy and t € [t;q,) + p,di] thent — p € [t;4,), d1 — p] and there are no
impulsive moments in (t — p, t). Making a similar analysis of the Case 2.1, we have
v(it—p) 1t—p—tuy
v(t) n t—tia)
Case 3.2: If ¢4,y + p < dy and t € [t;eq,) tia,) +P), then t — p € [t;q,) — P tia,)) and there
is an impulsive moments t;4,y in (t — p, t). Making a similar analysis of the Case 2.2, we obtain
t— 1 t—t
v(t—p) > = 1(dy) > 0.
v(t) NP + By — tiay))
Case 3.3: If t;(4,) + p = dy, then for any t € (¢;(q,),d1], we get t — p € (tq,) — p,d; — p] and
there is an impulsive moments t;4,y in (t — p, t). Making a similar analysis of the Case 3.2, we get
v(it—p) 1 t —tiad,)
— = 0.
v(t) NP + By (€ — tiay))
Combining all these cases, we have

= 0.

= 0.

= 0.
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M@  fort € [c1, t(c;y4il

U(t - ,0) 1
W > < M (t) fort € (ty, tyy1], k=1(cy)+1,---,1(d))—1
Mjg,y(£)  fort € (t;a,)-1,d1].
Hence by (2.14), we have
I(dq)

Pt w(ty) —w(ti)]

k=I(c1)+1
1d)-1
ti(c)+1 1 tr+1 ) "
> [ oM, @i Y [ poewmiod

1 k=I(c1)+1 "tk
dq dq ,

+[ O rOeOM©0d - [ roE©?d @)
ti(dq) €1

Since [r(t)g(v)] <0 for all t € (1 trepy+1ls r(t)g(v'(t)) is non-increasing in (e tiepy+1l-
Thus

o r(g@ (®)
v(®) >v(t) —v(e) =v ()t —c) 2 &) (t—c1), $a€(cpt)
rOgEW©) _ 1) | e - .
and hence e < P Letting t = t/(¢,)+1/ |t:ollows that
1
w(tiey) = —————. (2.18)

tiep+1 — €1
Similarly we can prove thaton (ty_1,tx], k = I(cy) + 2,-++,1(dy),

T
w(ty) = ————. (2.19)
b — te—1
Hence (2.18) and (2.19), we have
1(dq1) ‘8 " B a* 1
kK — Xk I1(c))+1 = “I(c)+1
Pz(tk)W(tk)[ - |Z T [pz(tl(c1)+1) - pe - ; s
k=i(c1)+1 k I(c1)+1 I(cp)+1 — €1
1(dy) 8 . 1
kT A
+ Z P )=
k=i(c3)+2 ko e k-1

= —A(p,cy,dq).
Thus we have
I(d1) )
ar — P

X

< /\(p, C1, dl)

p? (t)w(ty) [
k=I(c1)+1
Therefore (2.17), we get
1(d1)-1

tk+1

f’(”)“pZ(t)Q(t)M}(Cl)(t)dt+ > [T ree@miwd

1 k=I(c;)+1 "tk
dq

dq
[ P OOM O - [ ©E ©)d < Aped)
trdy) C1
which contradicts (2.8).
If I(cq) =1(dy) then A(p,cq,dy) = 0 and there are no impulsive moments in [cq,dq].

Similar to the proof of (2.17), we obtain

dq
f [P (OQ®)M;,5 (1) = nr(H) (P (£))?]dt < 0.

This again contradicts our assumption. Finally if v(t) is eventually negative, we can consider
[c2,d;] and reach similar contradiction. The proof of theorem is complete. |
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Theorem 2.2. Suppose that (H{) — (Hs) hold, furthermore for any T, there exist c;, d; satisfying
(Hg) withTE ¢y < dy, T < B, <d; and G(t) € J;(c;, d;) such that

Liep+1 ) ldo-1 trt1 ) d; ‘
[ ewewmi@acr Y [T eweomiod+ [ oe@Mig 0
Ci k=I(c;)+1 ~tk ticd;)
d;
—f nr(t)g*(@)dt = 0(G, ¢;, d;) (2.20)
Ci
where 0(G, ¢;,d;) = 0forI(c;) = I(d;) and
1dy)
Biep+1 — az( D+1 Br — i
0(G,c;,dy) =1 4G cp+1) == p G - + Z G(t k)f
icor (ot =6 64, a (t — te—1)

for I(c;) < 1(d;), i = 1,2, then every solution of the boundary value problem (1.1) — (1.2) is
oscillatory in G.

Proof. Similar to the proof of Theorem 2.1, suppose v(t —p) for t&= ty. If I(c;) <I1(d;),
multiplying G (t) throughout (2.12) and integrating over [c;, d;], we get

I
Y tz(c1)+1 1 G(
Gt w(te) —w(td)] = (t —w(t) +ng()r()| dt
k=I(c)+1
1(dy)-1
tk+1 1 G(t
+ Z f ((t)) w(t) + 19 (VT @) dt+ ’ "o +r]g(t),/r(t dt
k=I(cp)+1 ~tk fl(d)
ticy)+1 ( _p)
[ ewew 2
c1 v(t)
N[ we-p) [ v(t=p)
+ Z U OO = dt+f GO =gyt
k=I(c1)+1 tietp
4 v(t —p) 4
+f G(Q(t) ———= "0 dt—j nr(t)g?(t)dt.
tidy) C1
ti(cq)+1 1@t tr+1 dq
zj G(D)Q()Mjdt + G(t)Q(t)M,}dt+f G(O)Q()M]q,dt
‘1 k=I(cp)+1 “tk tidy)
dy
- f nr(t)g®(t)dt. (2.21)
€1
On the other hand, from the proof of Theorem 2.1, we have
n L1
t z -, ty) = ——.
W(tiey+1) = T w(ty) b=t
fork =1(cy) + 2,---,1(dy). We get
1(dy) .
Bk — ay Bie)+1 — Al(c)+1 1
G(tk)w(tk)[ |2 71 |6ty epya) = ———
k=I(c1)+1 I(c1)+1 I(c1)+1 1
1(dq) 8 . 1
k—
+ Z 1 e —
k=i(cy)+2 ko e -1

> —G(G, Clldl)'
Thus we have
1(dy)

G(tOW(te) [“Z a_k A k] < 0(G, o1, dy).

k=I(c1)+1
Therefore (2.21), we get
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1(d)-1

tr(c)+1
[ sweme, @ +

c1 k=I(cy)+1 “tk

dq

G(OQM (t)dt + f G(DQEIMjq,y()dt

ti(dy)

tk+1

dq
_f nr(t)gz (t)dt < G(G, 1y dl)
€1

which contradicts (2.20). If I(c;) = I(d;), the proof is similar to that the Theorem 2.1, and so it is
omitted here. The proof of theorem is complete. [ |

Next, we will establish Kemenev type oscillation criteria for (1.1) following the ideas of [6]
and [13]. Let D = {(t,s):ty < s < t}, then a function H € C(D, R) is said to belong to the class
H if
(H;)H(t,t) =0, H(t,s) > 0fort > s and

oH oH
— and — on D such that
at ds

Z—IZ = 2h,(t,s)/H(t,s), Z—I: = —2h,(t,s)/H(t,s)

where hq, h, € L, (D, R).

(Hg)H has partial derivative

The following two lemmas are needed to prove our theorem.
Lemma 2.2. Suppose that (H{) — (Hs) hold and v(t) is a solution of (1.1)-(1.2). If there exist
0; € (c;,d;), 0; & {t;}, i = 1,2 such that v(t) > 0 on [01,d;] and v(t) < 0 on [0,,d;] then for
anyH € H

tieH+1 . 1@t tk+1 )
[T @m0+ Y [ HdeM @
0; k=I(0;)+1 ~tk
d: 1(d;) i
‘ i a — B
+ H(d;, s)Q(s)Mjq,(t)dt < H(d;, ti) —=—w(t) — H(d;, 0)w(6:)
R k=1(6)) k
d;
+f nr(s)h3(d;, s)ds. (2.22)
0;
Proof. The proof is similar to [5]. So we omit it. [ ]

Lemma 2.3. Suppose that (H{) — (Hs) hold and v(t) is a solution of (1.1)-(1.2). If there exist
0; € (c;,d;), 6; € {t,}, i = 1,2 such that v(t) > 0 on [c1,01) and v(t) < 0 on [cy, 8;) then for
anyH e H

1(6:)—1
ti+1

brep+1 . .
[ HeaeeMicod s Y [T oM@
€i k=I(cp)+1 "tk

1(6;)
0; *
: ; ai — P
[ @My ©Ode s Y HE ) E )~ HE cow©)
e kST k
0;
+ f nr(s)hi(s, c;)ds. (2.23)
Ci
Proof. The proof is similar to [5]. So we omit it. [ ]

Similar to [[9], Theorem 2.3], we have the following theorem
Theorem 2.3.Suppose that (H;) — (Hs) hold. Assume that there are 0; € (c;,d;), i = 1,2, and
H € H such that

1 tio 1 . O |
- f H(d, )0 Mgy (D)t + f H(dy,$)Q(s)ML.(8)dt
H(di; 91) 91' ! k=1(9i)+1 tr
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d; 4
+f H(d;, $)Q()Miqay (Ddt - f nr(s)h%(di,s)ds]
tid, 0,
v 1(6)—-1
1 Liep+1 ; ti+1 i
+H(9i'ci) ‘ffi H(S'Ci)Q(S)MI(ci)(t)dt-F z f H(S,Ci)Q(s)Mk(t)dt

k=I(c;)+1

Gi . HL'
[ QMg ©de - [ e, c»ds]
3ICH) Ci
> Z(H,c;, d)), (2.24)
where 2(H, ¢;,d;) = 0 for I(¢;) = I(d;) and
E(H: Ci, dl) =
1(d;)

_n Brop+1 — 0‘1(9 D+1 Br — a
o 1(9 )+1( 10)+1 — ) k=I1(6,)+2 k k k=1
B 1(6:) 8 .
T; I(c)+1 — al(cl)+1 k— g
o H(8,0) H(tiep+1,6) G — + Z Hti, ¢ w7
i Ci icorCliepr =6 | ot (b — -1

for I(c;) < I(d;), i = 1,2 then every solution of (1.1)-(1.2) is oscillatory in G.

3. Example
In this section, we present an example to illustrate our results established in Section 2.
Example 1 Consider the following impulsive partial differential equation

%[39(%u(x,t))]+mu( t—§)+4u(,t—g) l

T Vs
= 60u(x, t) + 50u (x,t - §) FFGoD), t#2knt, (3.1)

u(x, tf) = %u(x, t), u(xtH) = gut(x, tr), k=12, J
for (x,t) € (0,m) X R, ,with the boundary condition
u(0,t) =u(mt) =0, t=+2km i% k=12,---. (3.2)
Here Q= (0,n), N =1, ay = a = %, Br=PFc=%711)=3,q1) =m, q;(t) =4, glw) = 2u,
n

f)=fiW=u a®)=6 a®)=5 ©u=5 n=2 F(x,t) = 9sinxcos (t _§) +

m sinx cos (t —%) and m is a positive constant. Also p = %, tys1 —ty =m/2 > m/8. For any

“ wlN

T > 0, we choose k large enough such that T < ¢; = 4km —% <dy =4knr and ¢, = 4kn +% <
dy, = 4km + %, k =1,2,---. Then there is an impulsive movement t;, = 4km — % in [cy,dq] and an
impulsive moment ¢t = 4km +% in [c3,dy]. For e = & =1, we have Q(t) = m+ 4, and we
take p(t) = sinl6t € J,(c;,dy), i =12, ty,) = 4km =T,
simple calculation, the left side of Equation (2.8) is the following :

tia,) = 4km — %, then by using

ti(cy)+1 ) 1 fan)-1 tk+1 ) 1
f QP OMicy©de+ ) QOP* ML (D)dt
1 k=I(c1)+1
dq dy
+[ et ©Mi,©d- [ e oy
tidq) c1
4em 2 t—%— dkm+ 2
> (m+4) f sin?(16t) — | dt
4-kn—% t—4km+—
4
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sin?(16t) dt

56)+ () (¢~ e +3)

dherr t — = — 4k + =
+ f sin?(16t) 8 — 2 ) dt
4;”[_% t—4km + "

3 4km
——(16)? f (1 + cos32t)dt
2 4km-2

_|_f 4

~ (m+ 4)(0.27685) — 603.18578.
for m large enough. On the other hand, note that I(c;) =k + 1,I1(dy) = k,ry = 3, we have
A(p, c;, d;) = 0. Therefore the condition (2.8) is satisfied in [c1, d;]. Similarly, we can prove that
for t € [cp,d;]. Hence by Theorem 2.1, every solution of (3.1) — (3.2) is oscillatory. In fact
u(x,t) = sinx cost is one such solution of the problem (3.1)-(3.2).

4. Conclusion

In this paper, we have obtained some sufficient conditions to the impulsive partial
differential equations. The improvement factors impulses, delay and forcing term that affect the
interval qualitative properties of solution in the sequence of subintervals in R, were taken into
account together. Our newly obtained results in this paper have improved and extended some of
the results already prevailing in the existing literature.
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